Sustaining Nuclear Generation

Exelon Perspective Presented to Illinois Commerce Commission

October 1, 2019

Marilyn C. Kray

Vice President
Strategy and Development

Exelon Long-Term View of US Nuclear Industry

- ✓ Preserve the existing fleet
 - 96 reactors in operation
 - Provided 19.3% of total US electric generation and over 55% of country's emissions-free electricity in 2018
 - Achieved 92.3% average capacity factor in 2018
- ✓ Support development of light-water small modular reactors (SMRs) and advanced reactors for commercial deployment

Momentum of current fleet is needed to ensure commercial viability of next generation of SMRs and advanced reactors

Illinois' Nuclear Fleet Provides Resilient, Reliable, Low-Cost and Carbon-Free Energy

- ✓ Illinois' nuclear plants are the reason that it has one of the lowest electricity rates in the nation and produces more clean energy than any other U.S. state.
- ✓ Illinois has the largest nuclear fleet in the U.S., with 11 operating nuclear units at 6 power stations, which collectively produce more zero-emission energy than any other state.
- ✓ Exelon's nuclear plants:
 - Produce more than half of Illinois' total electricity and 92% of its carbonfree power
 - Generate enough electricity to power more than 11 million homes and businesses
 - Provide one of the lowest-cost baseload sources of electricity available today
 - Supply 8 times more carbon-free power than all Illinois wind and solar farms combined
 - Operate around the clock, and are reliable during extremes of heat and cold that severely limit other sources of electric power

Premature Nuclear Plant Closures/Shutdowns

Plant	MWe	Closure Year	Reason
Crystal River 3	860	2013	Economic
San Onofre 2 & 3	2,150	2013	Policy/Economic
Kewaunee	566	2013	Market
Vermont Yankee	620	2014	Market
Fort Calhoun	478	2016	Market
Oyster Creek	625	2018	Policy
Pilgrim	678	2019	Market
Three Mile Island 1	803	2019	Market
TOTAL	6780		
Davis-Besse	908	2020	Market
Duane Arnold	619	2020	Market
Indian Point 2 & 3	2,061	2020- 2021	Market & Policy
Beaver Valley 1 & 2	1,872	2021	Market
Perry	1,268	2021	Market
Palisades	789	2022	Market
Diablo Canyon 1 & 2	2,240	2024- 2025	Policy
TOTAL	9757		

Already Retired: Enough carbon-free energy to power 6.7 million homes and businesses

Closures Announced: Enough carbon-free energy to power 9.7 million homes and businesses

Exelon Efforts to Preserve Current Fleet

- ✓ Uphold safe operation
- ✓ Implemented power uprates and license renewal
- ✓ Continue investment in long term asset management
- ✓ Pursue second license renewal
- ✓ Reduce Costs
 - Collaborate with operators through Delivering the Nuclear Promise
 - Implement Project Legacy
 - Foster innovation
- ✓ Continue state and federal level advocacy for policy changes

Overview of Advanced Reactors

- ✓ Promise lower operating costs due to breakthroughs with design and fuel
- ✓ Size categories of nuclear reactors:
 - Micro reactors (less than 10 Mwe)
 - Small modular reactors (between 10MWe and 300MWe)
 - Large scale reactors (greater than 300MWe)
- ✓ Reactor type categories of reactors
 - Light-water cooled
 - Molten salt
 - High Temperature
 - Fast
- ✓ Expected Commercialization dates of advanced reactors range from 2020's through early 2030's

Current Scenario for Light Water SMRs and Advanced Reactors

Concern over lack of US leadership in Nuclear Industry

Protection of National Security

Continued Need for Fuel Diversity

Concern over Environmental Trends

Platform for Action

GOVERNMENT RESPONSE

- Federal legislation
- Strong DOE support and leadership
- NRC funding and actions

INDUSTRY RESPONSE

- Increased activity by technology developers
- Availability of venture capital funding
- Coordination of industry initiatives

Recent years have shown an unprecedented interest in advanced reactors by industry, media, government and other stakeholders

Players Shaping Strategy

Current Objective and Execution Plan

Objective: Create and sustain long-term optionality for Exelon

Execution Plan:

- Explore and evaluate opportunities with light water SMR and advanced reactor developers
- 2. Engage with internal and external stakeholders
- 3. Participate in industry forums to influence regulatory process and economic policy

Motivation for Exelon

- Influence future designs by providing operational perspectives
- Ensure available technology alternatives for the future
- Advance decarbonization of the energy sector to combat climate change
- Create business opportunities to provide operational services
- Communicate our long term commitment to nuclear to employees and external stakeholders
- Uphold our role as an industry leader

Proposed SMR and Advanced Reactor strategy is informed by the challenging environment currently surrounding Exelon's nuclear units and recognizes the need for the current fleet to sustain the manufacturing capability and talent pipeline

Reactor Technology Evolution

Light Water Reactors (LWR)

Existing fleet

Passive LWR

<u>Developers</u> Westinghouse GE-Hitachi


Fusion Reactors

<u>Developers</u>

Helion
Tri-Alpha
General Fusion
Lockheed Martin
FusionOne

Molten Salt and Fast Reactors

Developers
Kairos
Terrestrial
TerraPower
Flibe
Elysium
Oklo
Westinghouse
UPower

High Temperature Gas-cooled Reactors (HTGR)

Developers
PBMR Ltd
Gen Atomics
Areva
Urenco
X-energy

SMR / Advanced Reactor Strategy Progress

Light Water SMR engagement

Developer	Exelon Activity	
3-3	✓ Member of NuScale Advisory Board	
HOLTEC	 ✓ Member of Holtec Advisory Council ✓ Signed MOU to provide support for design 	
HITACHI	✓ Signed Project Support Agreement	

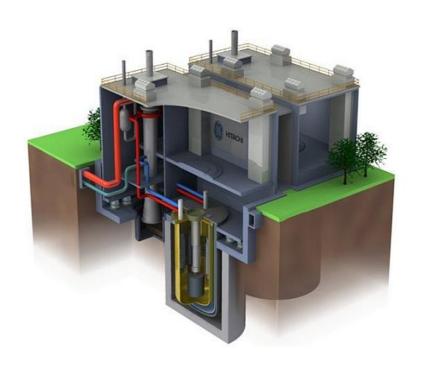
Internal and External stakeholder engagement

- Interface with numerous advanced reactor developers
- Member of NEI SMR Working Group and SMR Start
- Chair of NEI Advanced Reactor Working Group
- Member of NEI Microreactor Task Force
- Member of EPRI Advanced Reactor Technology Resource Integration Committee
- Engaged with Clear Path, Third Way and Clean Air Task Force

Supporting Information

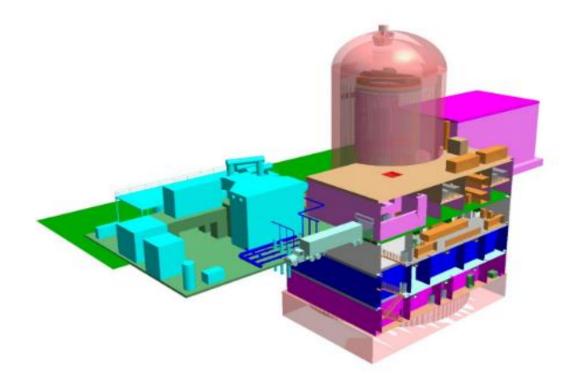
NuScale Technology Overview

- Integrates reactor vessel, steam generator and highpressure steel containment
- Recipient of significant funding by DOE
- Designed as dual "sixpacks" of 60MWe reactors for total output of 720MWe



- Mature design with NRC review of Design Certification application under review and on schedule
- MOU with UAMPS and Idaho National Lab to construct plant at INL, financial investment decision by UAMPS under consideration
- Selected by TVA as design for potential plant at Clinch River site

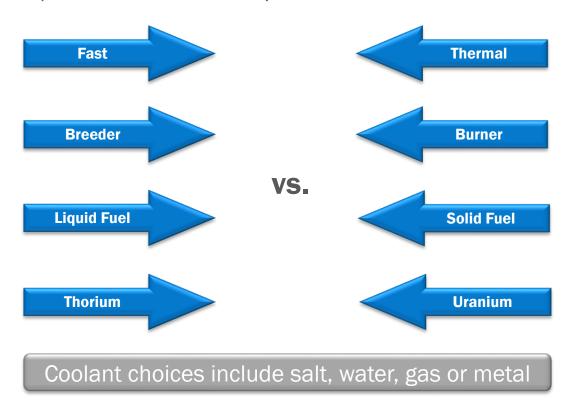
GEH BWRX-300 Technology Overview


- 300MWe output
- Natural circulation
- Isolation condenser system cooling
- Early stages of design, but based on technology of NRC approved ESBWR

Holtec SMR-160 Technology Overview

- 160MWe output
- Pursuing licensing by Canadian Nuclear Safety Commission
- No boric acid
- Passive containment cooling

- ExGen signed an MOU with Holtec, joining SNC-Lavalin and Mitsubishi Electric on the Holtec SMR team
- Energoatom (Ukraine's national nuclear generator) announced plans to establish a "consortium" with Holtec to explore the environmental and technical feasibility of an SMR-160 system



Advanced Reactors

Output ranges from 1MWe to gigawatt size

Generally, "advanced reactor" refers to a design using a different fuel form, coolant

and/or moderator as compared to current fleet

Advanced Reactor Categories (Representative Examples)

High Temperature

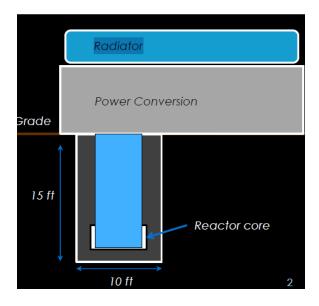
- X-energy
- Areva
- Urenco U Battery
- Kairos Power

Molten Salt

- Terrestrial Energy
- FLiBe
- Elysium
- Terra Power

Liquid Metal

- GEH PRISM
- Westinghouse
- Oklo
- Advanced Reactor Concepts


Fusion

- Tri-Alpha
- Helion
- Lockheed Martin
- Commonwealth Fusion
- Significant effort underway to reform current regulatory framework to accommodate new designs
- Developers range from small startup companies to large, established entities

Microreactors

- Generally, 1MWe to 10MWe
- Designed to replace diesel-powered electricity in remote areas
- Designs span multiple types including light water cooled, gas cooled and molten salt
- Recent interest by DOD for deployment at permanent installations and mobile sites

- Most require U enrichment >5% but <20% allowing for 10-12 operation without offsite fuel supply
- Leading developers include: Oklo, X-energy, WEC, Elysium, Flibe and Urenco

